

PHYSICS EXPERIMENT 6: Hooke's Law

Name:_____

Date:_____

Partners: _____

- 1. **PURPOSE:** To study the properties of springs.
- 2. HYPOTHESIS: (SKIP)
- **3. PROCEDURE**:

APPARATUS:	MATERIALS:
 ring stand clamp mm ruler mass set 	2 different springs Fisher # S41028 # S41029

PART-A: The elongation of a "light" spring.

- **Step-1:** Hang a "light" spring to a ring stand.
- Step-2: Align the zero reading of a (mm) ruler with the end of the spring. Tape the ruler to a graduated cylinder or a book or a box and make sure you do not move it.
 - ★ **IMPORTANT**: Be sure to read the elongation of the "spring" at eye-level. Also, always read the same "spot" on the "spring" for each reading.
- **Step-3:** Hang the following masses to the spring and for each mass carefully record the elongation (in millimeters):

MASS	ELONGATION (mm)
0	0
20 g	
40 g	
50 g	
70 g	
90 g	
100 g	
120 g	
140 g	
150 g	

1. Graph your experimental data below. Plot the distance the spring stretches (along the y-axis) versus the mass which represents the force (along the x-axis).

Be sure to select suitable units both for the mass (g) and the distance (mm).

After plotting your points, draw a smooth line which best fits the most plotted points.

2. What kind of relationship between the elongation of the spring and the mass (force applied) does your graph above indicate?

PART-B: The elongation of a "heavy" spring.

- Step-1: Hang a "heavy" spring to a ring stand.
- Step-2: Align the zero reading of a (mm) ruler with the end of the spring. Tape the ruler to a graduated cylinder or a book or a box and make sure you do not move it.
 - ★ IMPORTANT: Be sure to read the elongation of the "spring" at eye-level. Also, always read the same "spot" on the "spring" for each reading.

• Step-3: Hang the following masses to the spring and for each mass carefully record the elongation (in millimeters):

MASS	ELONGATION (mm)
0	0
400 g	
500 g	
600 g	
700 g	
800 g	
900 g	
1000 g	

3. Suggest two reasons why the two springs behave differently:

4. Graph your experimental data below. Plot the distance the spring stretches (along the y-axis) versus the mass which represents the force (along the x-axis).

Be sure to select suitable units both for the mass (g) and the distance (mm).

After plotting your points, draw a smooth line which best fits the most plotted points.

5. What kind of relationship between the elongation of the spring and the mass (force applied) does your graph above indicate?

- 6. Find the slopes of the graphs you plotted:
 - a) Slope of graph for the "light" spring (part-A):
 - b) Slope of graph for the "heavy" spring (part-B): _____

7. Which spring (light or heavy) has a higher spring constant?

- 8. What do the slopes represent?
- 9. What does the area under the curve represent?
- 10. Using your first spring graph (part-A), predict the elongation of this "light" spring for any three forces which you did not attach to this spring:

	MASS	PREDICTED ELONGATION
a)		
b)		
c)		

11. Using your second spring graph (part-B), predict the elongation of this "heavy" spring for any three forces which you did not attach to this spring:

	MASS	PREDICTED ELONGATION
a)		
b)		
c)		

12. a) If a spring stretches 5.0 cm when a mass of 15 g is attached to it, how many centimeters will it stretch when a mass of 20 g is attached to this spring?

b) How much potential energy is stored in the spring when the 20g mass is hung?